

Global overview, evolution, and epidemiology of the highly pathogenic avian influenza viruses

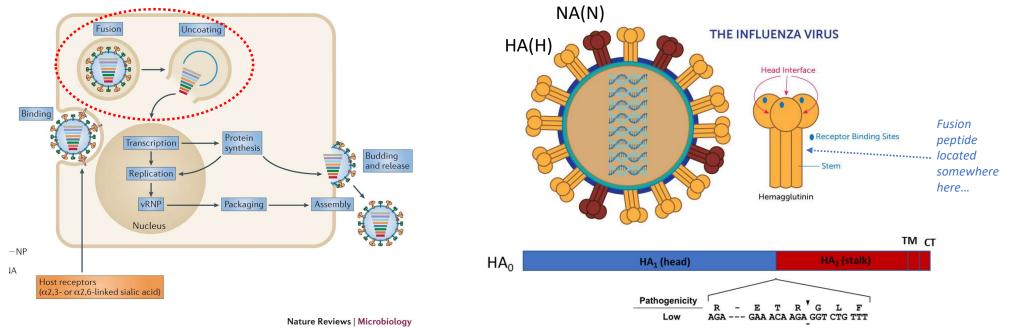
Celia Abolnik

NRF-DSI SARChI: Poultry Health and Production Faculty of Veterinary Science, University of Pretoria

SASVEPM webinar 14 March 2024

Threat of Emerging H5 and H7 Avian Influenza Viruses to the Regional Poultry Market

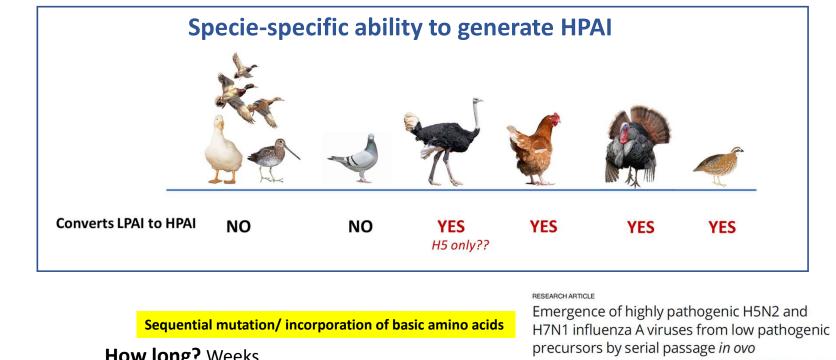
DEFAULT FORM:


What is HPAI, where does it come from?


Low Pathogenicity Avian Influenza (LPAI) viruses occur naturally:

	H1Nx H2Nx H3Nx H4Nx H5Nx ** H6Nx H7Nx ** H8Nx H9Nx	 N.B. H1 cannot mutate to H2 etc. Discrete lineages that diverged centuries ago All naturally occurring HPAI viruses are H5Nx or H7Nx subtype Not all H5Nx or H7Nx viruses are HPAI HPAI arises through mutation in terrestrial birds 			
-	H10 Nx	where "x" is any neuraminidase (N)		WOAH criteria: a virus is HPAI if- a) Lethal to chickens in <i>in vivo</i> tests (virus isolate kills	
	H11Nx H12Nx	subtype- N1 to N9		6-8 week-old susceptible chickens within 10- days	
	H13 Nx	and		or has an IVPI >1.2) OR	
	H14Nx H15Nx	"y" is N10 or N11		 b) The hemagglutinin protein cleavage site (HAO) sequence is typical of HPAIV 	
	H16 Nx				
A A A A A A A A A A A A A A A A A A A	H17 Ny H18 Ny				UNIVERSITEIT VAN PRETOR UNIVERSITY OF PRETOR YUNIBESITHI YA PRETOR

Importance of the HAO cleavage site sequence in viral pathogenicity (and HPAI classification)



Cleavage exposes fusion peptide: causes viral and cell membrane fusion

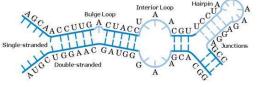
HA0 cleavage is facilitated by enzymes produced by the host cell:

- LPAIVs: amino acid motif cleaved by trypsin-like enzymes, secreted epithelial cells of respiratory + gastrointestinal tracts = infection limited to these tissues
- HPAIVs: contains additional basic amino acids (R/K) or extensions derived through non-homologous recombination with ٠ host or viral RNA (rare). Motifs cleaved by a broad range of **furin/subtilisin-like enzymes**; ubiquitous in **many cell types**= systemic infection/ multiple organ infections = lethal

A list of known HAO HPAI sequences is maintained by OFFLU

How long? Weeks

In ovo experiments: H7N1: HPAI in 7 passages H5N2: HPAI in 11 passages


passage in ovo. PLoS ONE 15(10): e0240290. Agnes Tinuke Laleye^{1,2}, Celia Abolnik² https://doi.org/10.1371/journal.pone.0240290

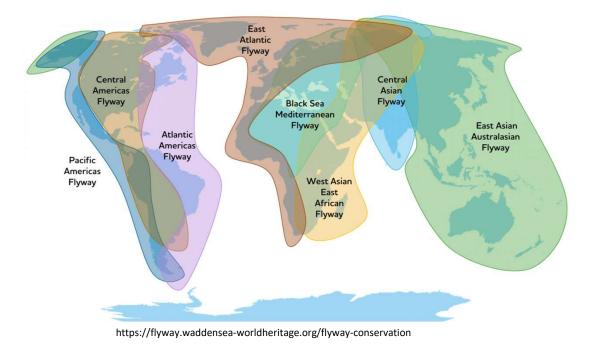
if passage = transmission events between individual hosts; typical infection dynamics Then theoretically: H7 HPAI could emerge within 3 to 7 weeks; H5 HPAI could emerge within 5 to 11 weeks

How?

Theory: Unstable secondary structure in the H5/H7 HA vRNA interacting with host transcription/replication machinery

Global HPAI events

- 45* recognised global mutational events/ epidemics of H5Nx or H7Nx HPAI since 1959
 *SA's 2023 H7N6 HPAI outbreak is the 45th recorded global event
- 43/45 were **highly-localised** (single country) outbreaks or epidemics
 - most < 1 year, some < 2 years; eradicated by stamping out
 - Exceptions: Mexico H7N3, 2012-present; China H7N9, 2017-present
- 2/45 were multi-country outbreaks
 - 1. 2003's H7N7 HPAI chicken outbreaks in Netherlands, Belgium and Germany; eradicated by stamping out
 - 2. Goose/Guangdong H5Nx HPAI pandemic



Goose/Guangdong (Gs/GD) H5Nx HPAI pandemic "Classic" H5/H7 HPAI VS. Gs/GD H5 HPAI • First emerged in China in 1996 \rightarrow Reassortment and evolutionary adaptation; divergence into sublineages; 8/10 extinct, 2 persist... • Reassortment with LPAI viruses and genetic drift: gained ability to subclinically infect some migratory bird species Pre-1996 H5N1 H5N1 H5N1 H5N1 H5Nx 1996-2004 2005 2008 2011 2014 1996 1213 21: 2005 Disseminates globally in multiple inter-continental waves 2014: Clade 2.3.4.4 emerges and 0.005 Not detected since at least 2008 (n=13) becomes dominant Source: www.who.int/influenza/gisrs laboratory/h5n1 nomenclature/en/.

Role of wild birds in the introduction and spread of clade 2.3.4.4B in sub-Saharan Africa

Popular map of bird migration-

depicts long-distance movements of waders, some storks and raptors to southern Africa (not ducks and geese)


Little stint (Calidris minuta) Sanderling (Calidris alba) Ruff (Philomachus pugnax)

PLOS ONE

Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

Nicolas Gaidet¹^s, Ahmed B. Ould El Mamy², Julien Cappelle¹, Alexandre Caron¹, Graeme S. Cumming⁴, Vladimir Grosbois¹, Patricia Gil³, Saliha Hammoumi³, Renata Servan de Almeida³, Sasan R. Fereidouni⁵, Giovanni Cattoli⁶, Celia Abolnik⁷, Josphine Mundava⁸, Bouba Fofana⁹, Mduduzi Ndlovu⁴, Yelli Diawara¹⁰, Renata Hurtado^{11,12}, Scott H. Newman¹³, Tim Dodman¹⁴, Gilles Balança¹

Conclusions: No seasonal peaks in AIV prevalence Shorebirds do not play a significant role in AIV introduction to southern Africa

What actually happens:

e.g. Eurasian widgeon

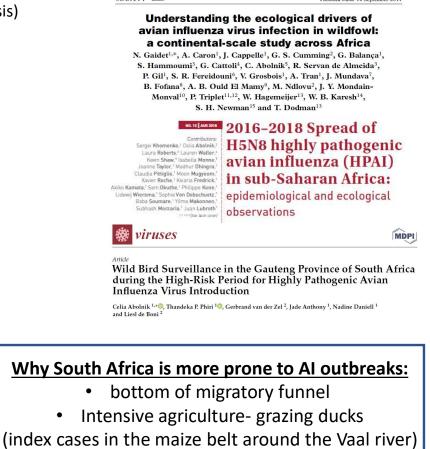
(courtesy of molecular epidemiological studies: surge in available H5 'flu genomes for analysis)

1. Palearctic-breeding ducks migrate south from Europe for the winter around October/November/December

White-faced whistling duck

2. Contaminated environment; inter-species mingling

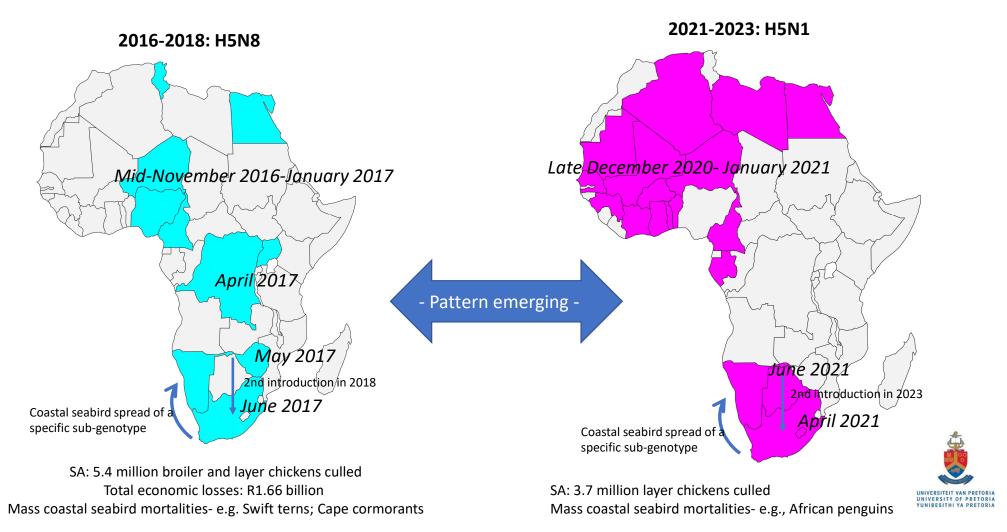
3. Intra-African migrant

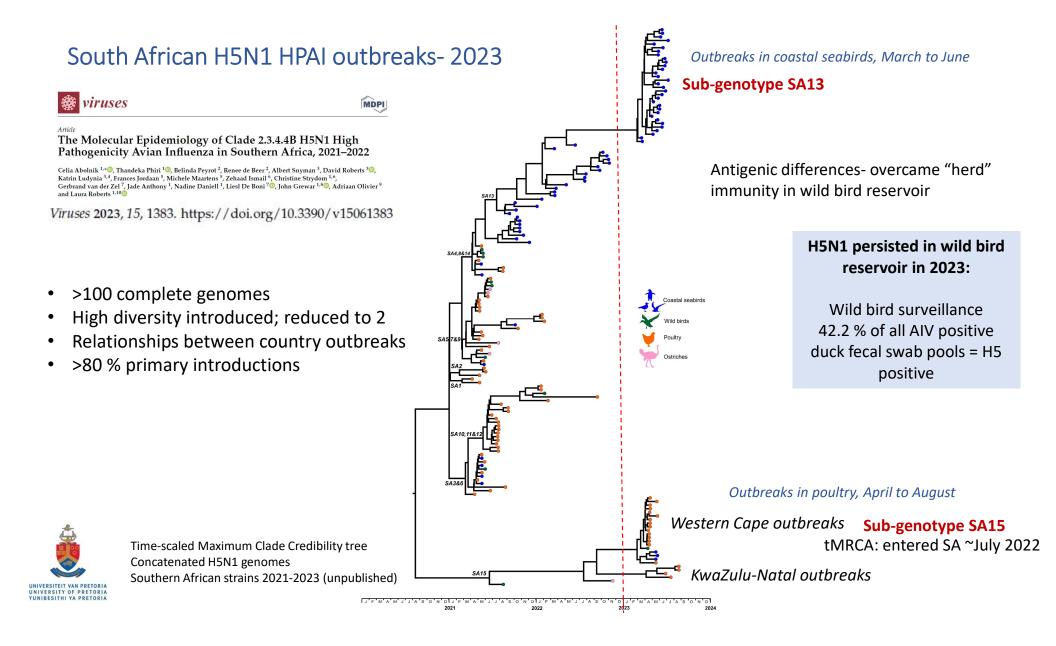

ducks move south driven

by rainfall patterns/ food

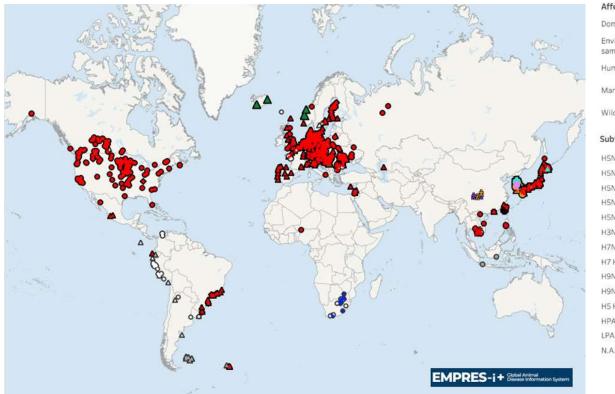
availability

PROCEEDINGS OF THE ROYAL SOCIETY

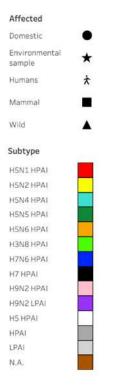

Proc. R. Soc. B (2012) 279, 1131–1141 doi:10.1098/rspb.2011.1417 Published online 14 September 2011



- higher poultry densities
- more temperate climate: environmental survival


No reverse gene movement: environmental factors: higher temps, asynchronous duck breeding, unpredictable movements

Two waves of Clade 2.3.4.4B H5Nx HPAI spread to sub-Saharan Africa with wild migratory birds index cases- reported cases in wild birds and/or poultry:



Current global HPAI situation

FAO map: 1 October 2023- 22 February 2024

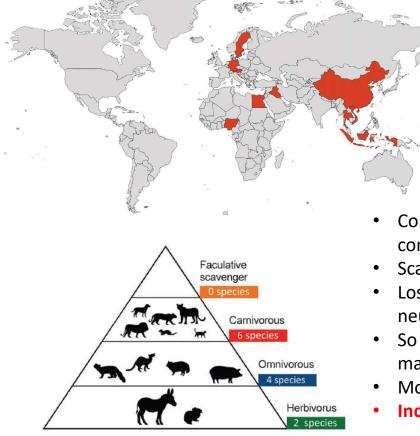
Mammals...

Countries reporting HPAI H5Nx outbreaks since

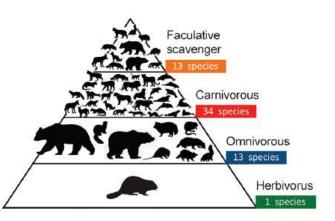
22 Feb: USA: wild birds + poultry Canada: wild birds + poultry Ecuador: poultry Brazil: wild birds Panama: wild birds Mexico: wild birds + poultry South Georgia & Sandwich Islands: wild birds

> Sweden: wild birds Norway: wild birds + poultry UK: wild birds + poultry Poland: wild birds + poultry Italy: wild birds + poultry Finland: wild birds Slovenia: wild birds Switzerland: wild birds Romania: wild birds Hungary: wild birds + poultry Czech Republic: wild birds + poultry Germany: wild birds + poultry Denmark: wild birds Austria: wild birds Ukraine: wild birds Bulgaria: poultry Slovakia: poultry Moldova: poultry Israel: wild birds

> > Cambodia: poultry

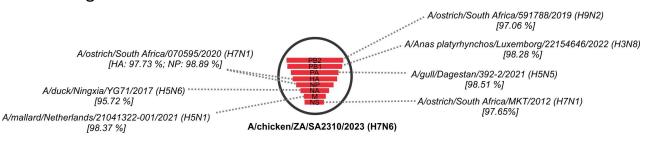

Nigeria: poultry Senegal: wild birds + poultry

Natural infections of H5 HPAI reported in mammals

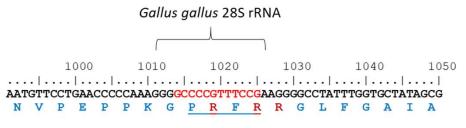

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 Plaza et al

(16 years) Gs/GD H5Nx, 2003-2019

(3 years) Gs/GD clade 2.3.4.4B H5N1, 2020-2023



- Contact with infected birds/ contaminated environment; water
- Scavenging on dead or dying birds
- Loss of appetite, respiratory and neurologic signs; death
- So far no sustained mammalmammal transmission
- Molecular markers being monitored
- Increasing zoonotic potential



Emergence of H7N6 HPAI in South Africa The most severe HPAI outbreak in SA's history 25% of total layer flock Losses estimated at R3 billion

• Emerged from local wild bird H7Nx LPAI viruses

• HA0 insertion derived from a non-homologous recombination event:

Rapid emergence: arises in a single virus replication cycle in one bird

- Index cases Delmas region; small holder poultry operation + commercial farm
- Speculative source: smallholding with mixed species or chickens with access to contaminated surface water frequented by wild ducks- Why now??

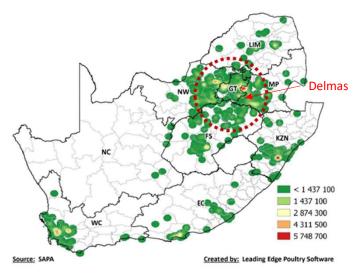
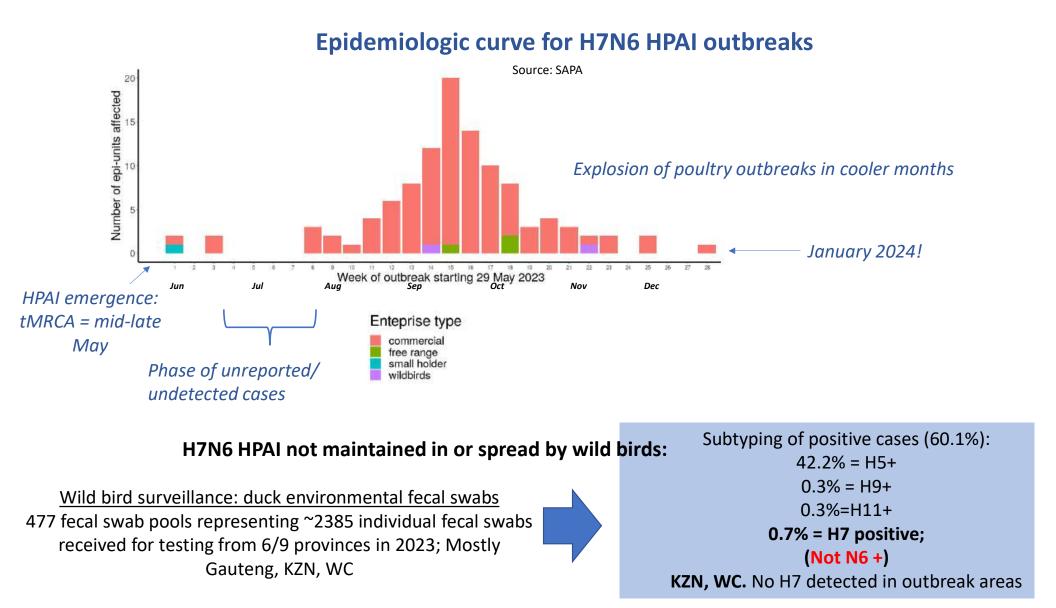
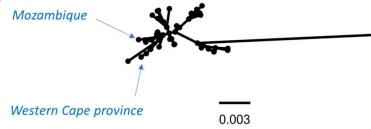



Figure 14: Heat map illustrating the density of chicken farms

Source: SAPA



H7N6 HPAI was disseminated by movements of infected chickens and fomites

- Adapted to replication chickens; lower bird infectious dose (?):
- Highly contagious and more so than clade 2.3.4.4 Gs/GD H5N1; biosecurity measures that kept H5N1 out failed with H7N6
- Routes of spread:
 - Poultry movements
 - Incubation phase- birds moved before the flock showed clinical signs; owners selling/dumping sick birds
 - Fomites
 - Vehicles (e.g., feed trucks), mud, feathers, possibly wind (dust, feathers) over <u>short</u> distances

Phylogenetic analysis: single source outbreaks; genetic and epidemiologic data links suppliers and clients (e.g., sale of point-oflay pullets)

Emerging Microbes & Infections 2024, VOL. 13, 2321993 (5 pages) https://doi.org/10.1080/22221751.2024.2321993	Taylor & Francis
LETTER TO THE EDITOR	

H7N6 highly pathogenic avian influenza in Mozambique, 2023

lolanda Vieira Anahory Monjane^a, Hernâni Djedje^a, Esmeralda Tamele^a, Virgínia Nhabomba^a, Almiro Rogério Tivane^b, Zacarias Elias Massicame^c, Dercília Mudanisse Arone^c, Ambra Pastori^d, Alessio Bortolami ^{Od}, Isabella Monne ^{Od}, Timothy Woma^e, Charles E. Lamien ^{Of} and William G. Dundon ^{Of}

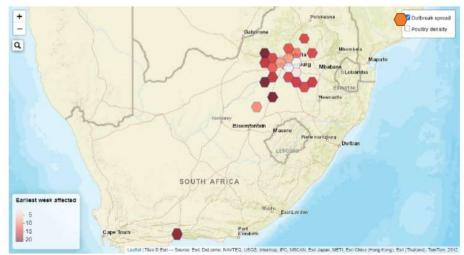


Figure 13: H7N6 outbreak spread (29 May to 8 December 2023)

EPI_ISL_12852376_A_ostrich_South_Africa_070595_2020_H7N1

Summary and Conclusions Two contrasting HPAI epidemiological situations

CLASSICAL

VS.

EXCEPTIONAL

<u>H7N6 HPAI</u>

- LPAI progenitor present in southern African wild birds
- HPAI emergence in local poultry
- Highly localized outbreaks
- Spread by poultry movements and fomites
- Chicken-adapted: efficient chicken-chicken spread
- No wild bird involvement in HPAIV spread
- Low zoonotic potential
- Poor control facilitated spread

Is it gone? Winter will tell.

Gs/GD clade 2.3.4.4B H5Nx HPAI

- LPAI progenitor in Chinese wild birds in early 1990's
- Emergence in Chinese poultry
- Circulation in domestic chickens and ducks (China)
- Reassortment events with LPAIVs
- Decades of evolution
- Adaptation to wild birds <u>and</u> poultry
- High environmental fecal contamination by ducks
- Lower ability for chicken secondary spread
- Northern hemisphere reservoir
- Disseminated by migratory wild birds
- Increasing zoonotic potential
- Annual, unavoidable risk

Conclusions: clade 2.3.4.4B H5N1 HPAI

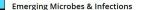
- Highly unlikely that other southern African countries had no H5N1 cases in 2021-2022; either not diagnosed (e.g., assumed NDV; botulism), or not reported
- Wild ducks don't respect borders- all at risk
- Encouraging to see more AI surveillance, virus genome data from SADC; regional institutions in collaboration with northern hemisphere partners
- Gaps in sequence database: need more AIV sequencing from SADC countries:
 - Essential for deeper understanding of HPAI epidemiology; risk assessment and mitigation; updating of diagnostic tests

Mabusetsa R.J. Makalo 😳^a, William G. Dundon 😳^b, Tirumala B.K. Settypalli 😏^b, Sneha Datta 💿^b, Charles E. Lamien 💿^b, Giovanni Cattoli^b, Moeketsi S. Phalatsi 💿^c, Relebohile J. Lepheana^a, Mpaliseng Matlali^a, Relebohile G. Mahloane^a, Marosi Molomo^a and Palesa C. Mphaka^a

Research Article

Surveillance and Phylogenetic Characterisation of Avian Influenza Viruses Isolated from Wild Waterfowl in Zambia in 2015, 2020, and 2021

Annie Kalonda 🕤 ^{1,2,3} Ngonda Saasa,² Masahiro Kajihara,^{4,5} Naganori Nao,^{4,5,6} Ladislav Moonga,⁷ Joseph Ndebe,² Akina Mori-Kajihara,⁸ Andrew Nalishuwa Mukubesa,² Mulemba Samutlao,^{1,1,5,7} Samuel Munjita,^{1,2,3} Yoshihiro Sakoda,^{5,9,0,11} Hirofumi Sawa,^{2,3,4,5,6,9,11,12,13} Ayato Takada 🐎 ^{2,3,6,6,9} and Edgar Simulundu ^O.^{2,14}



Communication

Emergence of High Pathogenicity Avian Influenza Virus H5N1 Clade 2.3.4.4b in Wild Birds and Poultry in Botswana

Samantha L. Letsholo^{1,*}, Joe James², Stephanie M. Meyer², Alexander M. P. Byrne², Scott M. Reid², Tirumala B. K. Settypalli³, Sneha Datta³, Letlhogile Oarabile⁴, Obakeng Kemolatlhe⁴, Kgakgamatso T. Pebe⁴, Bruce R. Mafonko⁴, Tebogo J. Kgotlel¹, Kago Kumile¹, Boitumelo Modise¹, Carter Thanda¹, John F. C. Nyange¹, Chandapiwa Marobela-Rakorokgue¹, Giovanni Cattoli³, Charles E. Lamien³, Ian H. Brown², William G. Dundon³ and Ashley C. Banyard^{2,*0}

MDPI

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/temi

Highly pathogenic avian influenza H5N1 virus outbreak among Cape cormorants (*Phalacrocorax capensis*) in Namibia, 2022 Taylor & Fra

Umberto Molini, John Yabe, Irene K. Meki, Hatem Ouled Ahmed Ben Ali, Tirumala B.K. Settypalli, Sneha Datta, Lauren Michelle Coetzee, Ellini Hamunyela, Siegfried Khaiseb, Giovanni Cattoli, Charles E. Lamien & William G. Dundon

Conclusions

- Reintroduction of H5N1 in 2024? Senegal and Nigeria reported cases in poultry and/or wild birds since February; new antigenic variants from Europe may overcome herd (flock) immunity
- Mitigation of risk:
 - Keep wild birds, rodents and insects out of poultry houses; do not use untreated surface water
 - Poultry farms should be located as far away from natural water sources as possible; high environmental load- wind blowing across wet feces can aerosolize virus
 - Do not mix species.
 - Duck farms and chicken farms should be separated
 - Domestic ducks must not have access to a natural water source frequented by wild ducks
 - Remove and bury domestic and wild bird carcasses risk of mammalian infections through predation
 - Vigilance; diagnose suspicious deaths in mammals in vicinity of avian outbreaks

Thank you for your attention

Email: celia.Abolnik@up.ac.za

Questions?

