

Animal Health Decision Making in a One Health Context

Dirk Pfeiffer

Professor of Veterinary Epidemiology Honorary Professor at London School of Health & Tropical Medicine

United Nations - Food and Agriculture Organisation Reference Centre for Veterinary Epidemiology

Outline

- Science
- Interdisciplinary research
- · Systems perspective
- Risk analysis
- Risk management
- Conclusions

RVC

SCIENCE

RVC

(adapted from Wilcox 2011)

From Reductionistic to Systems Thinking

- Biomedical sciences training largely based on
 - Promotes view that science of high quality achieved through reductionistic thinking
 - Focused on organism level and below
 - Underestimates effects due to system complexity
 - Collaboration between scientific disciplines involves working in parallel
- · Current and future health challenges require

S\C

- Need to consider human/animal within eco system -> systems thinking
- Collaboration through interdisciplinary research

D.U. Pfeiffer - Animal Health Decision Making in a One Health Context

Linking between Different Knowledge Perspectives

SVC

adapted from: Parkes et al 2005 - EcoHEALTH

INTERDISCIPLINARY RESEARCH

RVC

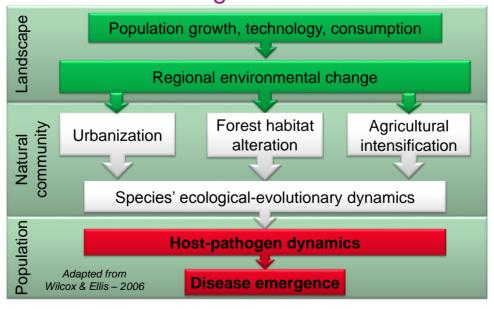
Challenges to Interdisciplinary Research

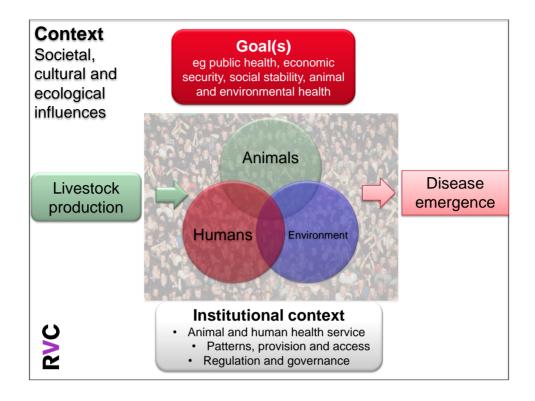
- · Disciplinary silos
- Different epistemologies
 - Epistemological silos
 - Need epistemological pluralism
- Link between disciplines via agreed conceptual frameworks outlining relevant elements in system
- Integration of quantitative and qualitative data and analysis approaches

RVC

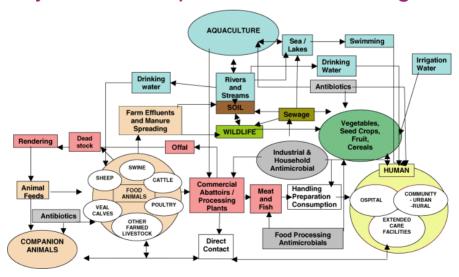
Quantitative versus Qualitative Approaches

Quantitative Approaches	Qualitative Approaches
aims to classify, count and construct statistical models to explain what is observed	aims for complete, detailed description
researcher knows in advance what they are looking for	researcher may only roughly know what they are looking for
collects numerical data using tools such as questionnaires <i>etc</i>	researcher is data gathering instrument
objective - seeks precise measurement & analysis of target concepts, e.g. uses surveys, questionnaires, etc.	subjective - individuals' interpretation of events is important, e.g. uses participant observation, in-depth interviews, etc.
quantitative data efficient, but may miss contextual detail	qualitative data is more 'rich', time consuming, and less able to be generalized
researcher objectively separated from subject matter	researcher tends to become subjectively immersed in subject matter
may force responses or people into categories which may not 'fit'	may focus too closely on individual observations


(from Tariq and Appleby)


SYSTEMS PERSPECTIVE (ECOHEALTH / ONE HEALTH)

RVC



Ecosystem Perspective on Disease Emergence

Systems Perspective on AM Usage

From: Comprehensive Reviews in Food Science and Food Safety - Antimicrobial Resistance: Implications for the Food System. Pages 71-137, 2 AUG 2006 DOI: 10.1111/j.1541-4337.2006.00004.x

RISK

RVC

1

Risk, Variation and Uncertainty

- risk -> likelihood of particular outcome combined with impact (consequences)
 - note different from epidemiological definition of risk
 - · influenced by variability and uncertainty
- variability -> variation in characteristics amongst entities or individuals
- uncertainty -> reflects lack of knowledge in relation to likelihood and risk pathways
 - more complex risk management, may decide to apply pre-cautionary principle

RVC

Uncertainty and Black Swans

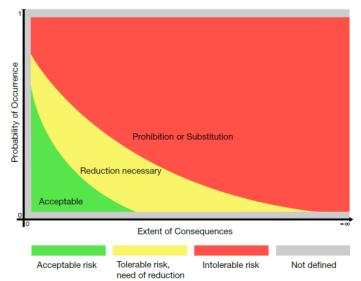
Uncertainty and Black Swans

Low uncert		oderate certainty	Deep uncertainty
Strong know	ex	ome dominating planations and liefs	Poor knowledge
No black sw		ack swans may cur	?????

RVC

(From Aven 2013)

Different Types of Risk (Social Amplification of Risk)


- · risk as analysis
- · risk as feeling
- · risk as politics

RVC

Kasperson RE, Renn O, Slovic P, Brown HS, Emel J, Goble R, Kasperson JX, and Ratick S. 1988. The social amplification of risk: A conceptual framework. Risk Analysis 8, 177-187.

19

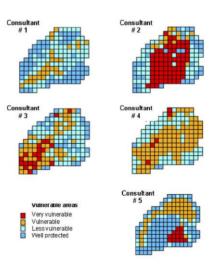
Acceptable, Tolerable or Intolerable Risks (from IRGC 2005)

N N

"Uncertainty Monster" at Science-Policy Interface

- uncertainty arising from ambiguities between phenomena
 - knowledge vs ignorance, objective vs subjective, facts vs values, prediction vs speculation, science vs policy
- coping strategies monster metaphor
 - monster- exorcism (more science needed), monster- adaptation (quantify uncertainty), monster- embracement (accept uncertainty as a natural phenomenon), monsterassimilation (accept uncertainty, promote transparency)

from: van der Sluijs – Water Science & Technology - 2005


3 VC

A hypothetical Example

Early detection of disease X:

5 scientific consultants addressed same question:

 "which parts of this geographical area are most vulnerable to introduction of disease X?"

RVC

(adapted from Refsgaard, Van der Sluijs et al, 2006)

How to act upon resulting uncertainty as a decision maker?

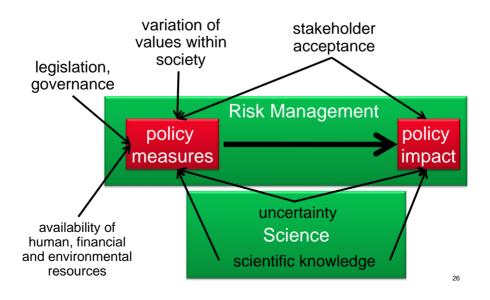
- Bayesian approach: 5 priors. Average and update likelihood of each grid-cell being red with data (but oooops, there is no data and decisions needed now)
- Consensus approach: Lock 5 consultants up in room and don't release before consensus
- Nihilist approach: Dump science and decide on another basis
- Precautionary robustness approach: protect all grid-cells

adapted from Refsgaard, Van der Sluijs et al, 2006

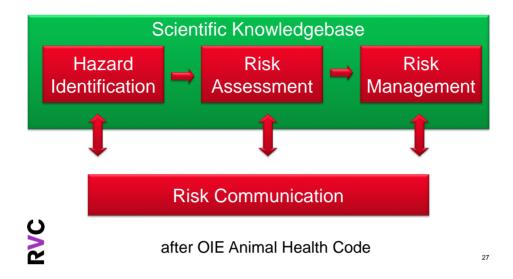
23

How to act upon resulting uncertainty as a decision maker? cont.

- Academic bureaucrat approach: Weigh by citation index (or H-index) of each consultant
- · Select consultant that you trust most
- Real life approach: Select consultant that best fits policy agenda
- Post normal: explore relevance of ignorance: working deliberatively within imperfections

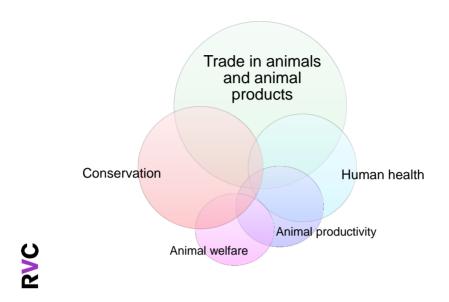

RVC

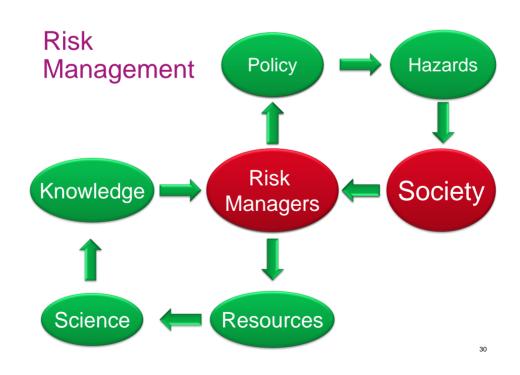
adapted from Refsgaard, Van der Sluijs et al, 2006


RISK ANALYSIS

RVC

Policy, Uncertainty and Science

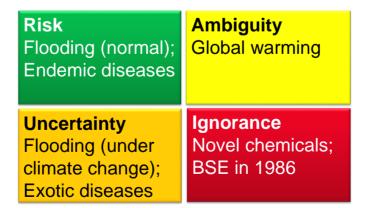

OIE Framework for Risk Analysis



RISK MANAGEMENT

RVC C

Purpose of Risk Management


Policy Makers need to acknowledge different Knowledge States for Event Occurrence and Consequences

Knowledge about	Likely consequences		
Likelihood of occurrence	Greater	Lesser	
Greater	Risk	Ambiguity	
Lesser	Uncertainty	Ignorance	

RVC C

Adapted from: Miles Parker - Defra UK and Stirling - Nature - 2010

Examples for Different States of Knowledge about Event Occurrence and Outcomes

SVC C

Adapted from: Miles Parker - Defra UK and Stirling - Nature - 2010

Suitable Approaches for different Knowledge Situations

Risk

Quantitative risk assessment; "Normal "science

Ambiguity

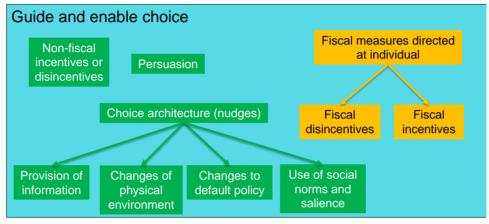
Expert opinion;
Open debate;
Comparative processes –
analogies

Uncertainty

Expert opinion; Modelling and scenarios; Open debate

Ignorance

Observational &
Descriptive approaches;
Open debate;
Values play important role


RVC

Adapted from: Miles Parker - Defra UK and Stirling - Nature - 2010

Actors involved in Risk Management Single issue Experts Academics Standard setters bodies Other **Public** Ministers Regulators politicians servants Public **Business** adapted from UK Risk and Regulation Advisory Council 2009

Typology of Policy Interventions directed at Individual's Behaviour

adapted from UK House of Lords 2011 - Behaviour Change

CONCLUSIONS

RVC

3

Conclusions

- Science
 - Needs to embrace systems thinking and integrated research approaches
 - Link biological and environmental with social sciences
- Risk assessment
 - Need to move beyond dominance by biomedical disciplines
- · Animal health policy development
 - Recognise limitations of relying purely on evidence generated by biomedical science
 - Conscious choice of appropriate policy tools for different knowledge states

RVC C